বিপরীত ফাংশন (Inverse Function) হলো এমন একটি ফাংশন, যা একটি মূল ফাংশনের আউটপুটকে তার ইনপুটে পরিণত করে। অর্থাৎ, যদি \( f(x) \) একটি ফাংশন হয়, তবে এর বিপরীত ফাংশন \( f^{-1}(x) \) হবে, যা \( f(x) \) এর আউটপুট থেকে ইনপুটে ফিরে আসতে সাহায্য করে। বিপরীত ফাংশন শুধুমাত্র তখনই অস্তিত্ব রাখে যখন ফাংশনটি এক-এক এবং সার্বিক হয়।
১. আবর্তন: যদি \( f(x) \) এবং \( f^{-1}(x) \) বিপরীত ফাংশন হয়, তবে \( f(f^{-1}(x)) = x \) এবং \( f^{-1}(f(x)) = x \) হবে। অর্থাৎ, \( f \) এবং \( f^{-1} \) পরস্পরের বিপরীত এবং একে অপরকে আবর্তন করে।
২. ডোমেন এবং রেঞ্জের বিনিময়: মূল ফাংশনের ডোমেন বিপরীত ফাংশনের রেঞ্জ হয়ে যায় এবং মূল ফাংশনের রেঞ্জ বিপরীত ফাংশনের ডোমেন হয়ে যায়।
৩. গ্রাফে প্রতিফলন: বিপরীত ফাংশনের গ্রাফ মূল ফাংশনের গ্রাফের উপর \( y = x \) রেখার সাপেক্ষে প্রতিফলিত হয়।
ধরা যাক \( f(x) = 2x + 3 \) একটি ফাংশন।
এই ফাংশনের বিপরীত ফাংশন বের করতে:
১. \( y = 2x + 3 \) লিখুন।
২. \( x \)-এর মান বের করার জন্য \( y \) এবং \( x \) এর স্থান পরিবর্তন করুন: \( x = 2y + 3 \)।
৩. এরপর \( y \) বের করুন: \( y = \frac{x - 3}{2} \)।
তাহলে, \( f^{-1}(x) = \frac{x - 3}{2} \) হবে।
এখন, যদি \( f(x) = 2x + 3 \) এবং \( f^{-1}(x) = \frac{x - 3}{2} \), তবে \( f(f^{-1}(x)) = x \) এবং \( f^{-1}(f(x)) = x \) হবে, যা বিপরীত ফাংশনের শর্ত পূরণ করে।
বিপরীত ফাংশন বিভিন্ন গাণিতিক সমস্যার সমাধানে ব্যবহৃত হয়, যেমন ইনপুট থেকে আউটপুট এবং আউটপুট থেকে ইনপুট খুঁজে বের করা। বাস্তব জীবনের উদাহরণ হতে পারে কিলোমিটার থেকে মাইল রূপান্তর বা তাপমাত্রার ফারেনহাইট থেকে সেলসিয়াস রূপান্তর, যেখানে মূল রূপান্তর ফাংশনের বিপরীত ব্যবহার করে উল্টো দিকে মান নির্ধারণ করা হয়।
Read more